

IMPORTÂNCIA DO MICRONUTRIENTE BORO (B) NA NUTRIÇAO VEGETAL DO MORANGUEIRO

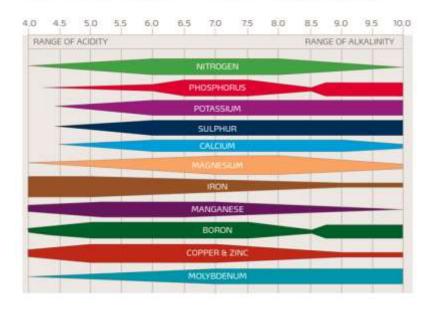
O Boro é um micronutriente aniônico, e na crosta terrestre se apresenta na forma de bórax. O Boro disponível para as plantas encontra-se na solução do solo como ácido bórico (em condições de pH neutro) e como ânion borato (a elevados valores de pH) e pode ser absorvido tanto por via radicular (raízes) como foliar (folhas).

Um fator muito importante para a sua disponibilidade do solo é o pH. A Matéria Orgânica também é uma importante fonte de Boro para as plantas. Também sofre influência do tipo de solo: correndo o risco de lixiviação nos solos arenosos e boa fixação e disponibilidade nos solos argilosos.

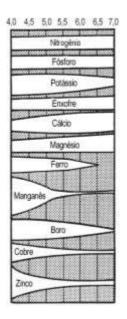
O micronutriente Boro, é um dos elementos essenciais à nutrição das plantas, com importantes funcões no metabolismo vegetal. Segue algumas abaixo:

- 1. Junto com o Cálcio, outro nutriente essencial às plantas, participam na formação, funcionamento e resistência da parede celular. O Boro aumenta o metabolismo do Cálcio, e a eficiência de sua função nas plantas.
- 2. É fundamental ao sistema reprodutivo da plantas : florescimento, produção e viabilidade dos pólens, polinização, produção de sementes, e de frutos saudáveis.
- 3. O boro desempenha um papel muito importante no bom funcionamento das membranas celulares, controlando o transporte de potássio para as células dos estômatos, que regulam o balanço hídrico interno das plantas. Também regula a movimentação de açúcares através das membranas celulares.
- 4. Importante na translocação de açúcares e carboidratos, e na manutenção do equilíbrio dos mesmos.
- 5. É essencial para a divisão celular, metabolismo de nitrogênio e formação de proteínas.
- 6. Faz parte do RNA, DNA e algumas auxinas.
- 7. Aumenta a disponibilidade de Nitrogênio às plantas.
- 8. Desempenha papel fundamental no crescimento e alongamento das raízes primárias e laterais.
- 9. Absorção de água (nutrientes) pelas raízes.

Possíveis causas da deficiência de Boro nas plantas:


- Baixo teor de Boro nos solos e substratos.
- PH do solo ou substrato. O Boro pode ficar indisponível às plantas com PH acima de 7,5. No caso de substratos em sistemas semi-hidropônicos acima de 7,0 já

torna-se indisponível conforme gráfico abaixo. Em PH mais baixos, o Boro torna-se mais solúvel e lixivia mais facilmente.


- Muita água aplicada ao solo ou substrato, causando a lixiviação do boro, principalmente em solos de baixa CTC, arenosos, muito friáveis e com baixo teor de Matéria Orgânica.
- Pouca disponibilidade de água. O Boro dissolvido na água do solo é absorvido pelas raízes através do fluxo de massa de transpiração das plantas. Em condições de seca ou de pouca disponibilidade de água na zona radicular reduzem a absorção de Boro.
- Baixa taxa de transpiração das plantas. O tempo nublado e frio reduz a absorção de Boro pelas plantas, devido à menores taxas de transpiração.
- Deficiência de Boro causa atrofia das raízes, agravando ainda mais a absorção de Boro.
- Antagonismos com outros nutrientes. Altos níveis de Cálcio no solo ou na solução nutritiva reduzirão a absorção de Boro. Em casos de toxicidade de boro, altas aplicações de cálcio solúvel reduzirão os efeitos tóxicos do Boro. Aplicações de altas taxas de Potássio e Nitrogênio em situações em que o Boro já encontra-se limitante ou marginal, pode diminuir ainda mais a absorção de Boro e consequentemente a produção. Aplicações elevadas de Zinco podem reduzir o acúmulo de Boro, enquanto aplicações elevadas de Fósforo podem aumentar o acúmulo de Boro.
- Estresse em condições de deficiência de Nitrogênio. Baixa taxas de Nitrogênio diminui o vigor vegetativo das plantas, afetando a absorção de níveis adequados de outros nutrientes essenciais às plantas.

ABSORÇÃO DE NUTRIENTES EM FUNÇÃO DO PH NO SOLO. Effect of soil pH on nutrient availability

ABSORÇÃO DE NUTRIENTES EM FUNÇÃO DO PH EM SUBSTRATOS ORGÂNICOS.

Observar como diminui a absorção de BORO com PH 7,0 em substrato.

MOBILIDADE DOS NUTRIENTES

⊟ement	No solo	Na Planta
N	Muito Alta	Medio-Alta
P	Muito baixo	Alta
K	Medio-Alta	Alta
Ca	Medio-Alta	Muito baixo
Mg	Medio	Medio
S	Medio	baixo
Fe	Medio-baixo	Muito baixo
Mn	Medio	Medio-baixo
В	Medio-baixo	Medio-baixo
Zn	Medio-baixo	Medio
Мо	Medio	Alta
Cu	baixo	baixo
CI	Medio-Alta	Medio-baixo

VALORES	MEDIOS DOS NUTRIENT	ES EM FOLHAS DE MORANG	UEIRO		
N g/Kg	30-40	Fe mg/Kg	50-300		
P g/Kg	2-4	Mn mg/kg	50-300		
K g/Kg	20-40	B mg/Kg	30-64		
Ca g/Kg	5-15	Cu mg/Kg	5-15		
Mg g/Kg	2,5-4,5	Zn mg/Kg	20-60		
S g/Kg	1,5-4	Mo mg/Kg	> 0,5		
- Ca, Fe, Mn e	B tendem aumentar a	o logo dos anos de produ	ção.		
- N,P,K, Cu e 2	Zn diminuem ao longo	dos anos de produção.			
- Mg mantém	n-se estável ao longo da	produção.			
- N,P,K, Cu e 2	Zn diminuem ao longo	dos anos de produção.			
- Folhas nova	as são ricas em N,P e K				
- Folhas velha	as são ricas em Ca, Fe, I	VIn e B.			

O teor de Boro recomendado nas folhas das plantas do morangueiro deve ser no mínimo 30 mg/Kg (ppm), mas com adubação pesada de potássio/nitrogênio, recomenda-se teor acima de 60 mg/Kg (ppm)!

ANTAGONISMO ENTRE NUTRIENTES NAS PLANTAS

Antagonismos que se											
apresentam nos cultivos											
Nutriente en e	excessso	Deficiencia in	duzida								
1	4	K									
ŀ	<	N, Ca, Mg									
	CI	N									
5	3	Мо									
N	la	K, Ca, Mg									
C	Ca	K, Mg, B, Mn, Zn									
N	1g	Ca, K									
C	Cu	Zn									
F	e	Mn									
Mn	ı,Zn	F	e								

Elem.	Efeito no teor do elemento de													
Aplic.	N	P	K	Ca	Mg	S	В	CI	Cu	Fe	Mn	Mo	Zn	
N	+		-	+		-	-							
P		+	-	+		-	-	-				+	-	
K			+	-	-									
Ca			-	+	-						-			
Mg		+	-	-	+						-		-	
S		-				+		-				-		
В							+						-	
CI						-		+					+	
Cu									+	-	-	-	-	
Fe									-	+	-			
Mn				-						-	+		-	
Мо									-			+		
Zn		-											+	

DEFICIÊNCIA DE BORO (B) NO MORANGUEIRO

Ao contrário de outros micronutrientes (ex.: Ferro, Zinco, Cobre), a deficiência de Boro não apresenta clorose nas folhas. Como o Boro participa da divisão celular , sua deficiência resulta em anomalias na divisão celular. Os primeiros sintomas de deficiência de Boro aparecem em pontos de crescimento da parte aérea e raizes das plantas, e nas estruturas de floração e frutificação.

A maior parte do boro nas plantas está ligada às paredes celulares, por isso não é muito móvel nas plantas. Em questão de minutos, uma escassez temporária de boro na seiva das plantas pode causar distorção/anomalias nos pontos de crescimento nas pontas do tubo polínico, resultando em abortamento e queda de flôres.

O boro ajuda a transportar açúcares por toda planta e uma deficiência causa uma redução de exsudatos e açúcares das raízes das plantas, podendo afetar a atração e colonização de microrganismos benéficos às plantas, dando oportunidade de microrganismos patógenos se desenvolverem e afetar as plantas.

SINTOMAS

- Os primeiros sintomas da deficiência de Boro (B) se apresentam nos brotos e folhas novas recém emergidas, com as extremidades "queimadas", encrespadas e necrosadas (ver fotos de 1 a 4). O crescimento dos estolões é reduzido e o comprimento das ramas dos estolões fica menor, diminuindo consequentemente a distância entre a planta mãe e as "filhas". O crescimento das plantas é completamente paralisada até que a deficiência de boro seja corrigida.
- O Florescimento é inibido e o desenvolvimento dos botões florais também é reduzido. A produção e a viabilidade dos pólens são afetadas, as flôres ficam menores e produção de pétalas é afetada, com maior espaço entre elas (ver fotos de 10 a 15).

- Os frutos ficam menores e defeituosos (ver fotos de 16 a 18). Se a deficiência de Boro for temporária, pode ser que os frutos não fiquem defeituosos, mas serão pequenos e com poucas sementes viáveis.
- Em plantas com deficiência de Boro, as florês tardias não formarão frutos.
- O crescimento das raízes é afetado, ficam curtas, atarracadas, com poucos pêlos radiculares, escuras e causam redução na absorção de nutrientes.
- Diminuição da concentração de clorofila.
- Diminuição da resistência às doenças.
- Diminuição da atividade das enzimas oxidantes.
- Se a deficiência de Boro não for corrigida, pode acarretar ataque de *RHIZOCTONIA* na coroa das plantas.

SINTOMAS DE DEFICIÊNCIA DE BORO EM BROTOS E FOLHAS NOVAS

Foto 4 Foto 5 Foto 6

Foto 7 Foto 8 Foto 9

Análise Foliar plantas - folhas fotos 5 a 9 acima!

Data de Recebime	ento da Amostra:	27/11	/17	RESU	LTADO DE		Baixo						
Data de Envio do Resultado:		05/12	/17	VE	GETAL		Alto						
Nº Lab.	Interessado	N	P	K	Ca	Mg	S	Cu	Fe	Zn	Mn	В	Na
					g/ kg			m g/kg					
6632	AREA 2	28,00	2,67	19,80	6,60	3,75	1,30	6	92	31	90	17	182

Observar o nível extremamente baixo de Boro (B).

SINTOMAS DEFICIÊNCIA DE BORO EM FLÔRES

Foto 10 Foto 11 Foto 12

Foto 13 Foto 14 Foto 15

FOTOS DEFICIÊNCIA BORO EM FRUTOS MORANGO

Foto 16 Foto 17 Foto 18

CORREÇÃO DO BORO NAS PLANTAS

- OCTABORATO DE SÓDIO TETRAHIDRATADO 21 % de BORO (B).
 - o Aplicação Foliar: 150 gr/100 L água.
 - o Frequência: 10 a 15 dias, quando em alta produção.
- OCTABORATO DE SÓDIO TETRAHIDRATADO 21 % de BORO (B).
 - o Fertirrigação: Consultar.

ABSORÇÃO DE MICRONUTRIENTES QUELATIZADOS EM FUNÇÃO DO PH

	рН													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Fe-EDDHA														
Fe-EDDHMA														
Fe-DTPA														
Fe-HEDTA														
Fe-EDTA														
Ca-EDTA														
Mg-EDTA*														
Mn-EDTA														
Zn-EDTA														
Cu-EDTA														
	*Excepto con niveles altos de Ca													

Francisco Nuevo

Eng. Agrônomo responsável Tec Água – Tecnologia da Água Comercial Ltda. Celular : 47 99208-44683