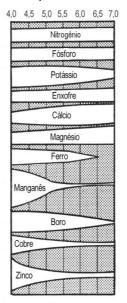


IMPORTÂNCIA DO MICRONUTRIENTE COBRE (Cu) NA NUTRIÇAO VEGETAL DO MORANGUEIRO

O micronutriente Cobre é muito importante na nutrição vegetal das plantas. Faz parte da constituição de inúmeras enzimas que participam de importantes processos na fisiologia vegetal, como : fotossínteses , respiração mitocondrial, processos oxidativos, etc. Além disso, participa no metabolismo de carbohidratos e proteínas.


Segundo pesquisa de Bolland (2003), o cobre (Cu) é um dos elementos envolvidos na formação do pólen, e muito importante para o processo de polinização, que como sabemos é fundamental para a formação de frutos saudáveis e não deformados. A deficiência de Cobre (Cu), segundo Bolland, afeta a produção de pólens saudáveis, e consequentemente a polinização, diminuindo a formação de células e tecidos vegetais, produzindo frutos deformados.

O micronutriente Cobre (Cu), sempre aparece em análises foliares de morangueiros em produção semi-hidropônica com níveis baixos. Acreditamos que sejam pelos motivos abaixo:

- O cobre é um dos nutrientes de mais baixa mobilidade nas plantas.
- Cobre e Zinco são antagonistas em solos e substratos, por meio da absorção radicular. Níveis elevados de Zinco, dificultam a absorção e transporte celular do Cobre e vice-versa.
- Baixos níveis de Cobre em substratos.
- Muita Matéria Orgânica.
- Excesso de Nitrogênio, Fósforo e Zinco na adubação.
- Substrato com deficiência de drenagem, leva a falta de aeração, que favorece a formação de compostos de cobre insolúveis.
- PH próximo a 7,0, figura abaixo:

ABSORÇÃO DE NUTRIENTES EM FUNÇÃO DO PH EM SUBSTRATOS ORGÂNICOS.

Observar como diminui a absorção de Cobre com PH 7,0 em substrato.

MOBILIDADE DOS NUTRIENTES

Element	No solo	Na Planta
N	Muito Alta	Medio-Alta
P	Muito baixo	Alta
K	Medio-Alta	Alta
Ca	Medio-Alta	Muito baixo
Mg	Medio	Medio
S	Medio	baixo
Fe	Medio-baixo	Muito baixo
Mn	Medio	Medio-baixo
В	Medio-baixo	Medio-baixo
Zn	Medio-baixo	Medio
Мо	Medio	Alta
Си	baixo	baixo
Cl	Medio-Alta	Medio-baixo

VALORES MÉDIOS DOS NUTRIENTES EM FOLHAS DE MORANGUEIRO											
N g/Kg	30-40		Fe mg/Kg	50-300							
P g/Kg	2-4		Mn mg/kg	50-300							
K g/Kg	20-40		B mg/Kg	30-64							
Ca g/Kg	5-15		Cu mg/Kg	5-10							
Mg g/Kg	2,5-4,5		Zn mg/Kg	20-60							
S g/Kg	2,5-8		Mo mg/Kg	> 0,5							

- Ca, Fe, Mn e B tendem aumentar ao logo dos anos de produção.
- N,P,K, Cu e Zn diminuem ao longo dos anos de produção.
- Mg mantém-se estável ao longo da produção.
- N,P,K, Cu e Zn diminuem ao longo dos anos de produção.
- Folhas novas são ricas em N,P e K
- Folhas velhas são ricas em Ca, Fe, Mn e B.

Antagonismos que se											
apresentam nos cultivos											
Nutriente en	excessso	Deficiencia induzida									
1	7	l	<								
ŀ	<	N, Ca, Mg									
(CI	N									
(3	Мо									
N	la	K, Ca, Mg									
C	Ca	K, Mg, B, Mn, Zn									
N	1g	Ca, K									
C	Cu	Zn									
F	e	Mn									
Mr	,Zn	Fe									

DEFICIÊNCIA DE COBRE (Cu) NO MORANGUEIRO

- SINTOMAS: Inicialmente folhas novas apresentam tom amarelado claro (clorose). Com a deficiência acentuada áreas internervais ficam com clorose forte, descoradas, inclusive as nervuras das partes com clorose no interior da folha, conforme fotos abaixo.
- Como o elemento Cobre (Cu) é muito pouco móvel nas plantas, a sua deficiência (clorose entre as nervuras) ocorre inicialmente nas folhas novas (observar foto 8).

Foto 1 Foto 2 Foto 3

Foto 4 Foto 5

Foto 6

Foto 7 – Site Yara:

 $\underline{https://www.yara.co.uk/crop-nutrition/strawberries/nutrient-deficiencies-strawberry/copper-\underline{deficiency-strawberry/}$

Análise Foliar das folhas fotos 1 a 6 acima!

	RESULTADO DE VEGETAL													
I	Data de Recebin	nento da Amostra:	da Amostra: 25/03/19 Baixo											
Data de Envio do Resultado: 02/04/19 Alto														
П	Nº Lab.	Interessado	N	P	K	Ca	Mg	S	Cu	Fe	Zn	Mn	В	Na
ı						g/kg				mg	2/kg			
lſ	900	1	26,60	2,39	23,40	9,70	4,40	1,00	2	188	30	136	76	24

Observar o nível extremamente baixo do Cobre (Cu).

MAIS FOTOS MORANGUEIRO COM DEFICIÊNCIA DE COBRE

Foto 8 Foto 9 Foto 10

FOTOS DEFICIÊNCIA COBRE EM FRUTOS MORANGO

CORREÇÃO DO COBRE NAS PLANTAS

- Hidróxido de Cobre 4% de Cobre (Cu).
 - Aplicação Foliar : 100 ml de Hidróxido de Cobre para 100 litros de água.
- Cobre quelatizado com EDTA 14 % de Cobre (Cu).
 - o Aplicação Foliar : 250 gr de Cobre EDTA para 100 litros de água.
 - o Fertirrigação Consultar.

ABSORÇÃO DE MICRONUTRIENTES QUELATIZADOS EM FUNÇÃO DO PH

	рН													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Fe-EDDHA														
Fe-EDDHMA														
Fe-DTPA														
Fe-HEDTA														
Fe-EDTA														
Ca-EDTA														
Mg-EDTA*														
Mn-EDTA														
Zn-EDTA														
Cu-EDTA														
	*Excepto con niveles altos de Ca													

Francisco Nuevo
Eng. Agrônomo responsável
Tec Água – Tecnologia da Água Comercial Ltda.